Using Genetic Algorithms to evolve Microstructures
نویسنده
چکیده
This thesis presents a novel approach to obtain characterisations of microstructures of materials in two and three dimensions, starting from morphological information that can be obtained from a conventional microscope. The reconstructions obtained can be used as starting configurations of computer models of various kinds and used to help predict the properties of the materials. The method employs a unique combination of Darwinian based artificial evolution and a developmental biology inspired cellular automata model in order to efficiently search for microstructural characterisations with specific features. These features can be both of geometrical nature and about physical properties.
منابع مشابه
Well Placement Optimization Using Differential Evolution Algorithm
Determining the optimal location of wells with the aid of an automated search algorithm is a significant and difficult step in the reservoir development process. It is a computationally intensive task due to the large number of simulation runs required. Therefore,the key issue to such automatic optimization is development of algorithms that can find acceptable solutions with a minimum numbe...
متن کاملMILP Formulation and Genetic Algorithm for Non-permutation Flow Shop Scheduling Problem with Availability Constraints
In this paper, we consider a flow shop scheduling problem with availability constraints (FSSPAC) for the objective of minimizing the makespan. In such a problem, machines are not continuously available for processing jobs due to preventive maintenance activities. We proposed a mixed-integer linear programming (MILP) model for this problem which can generate non-permutation schedules. Furthermor...
متن کاملاستفاده از الگوریتم ژنتیک در مسائل کوتاهترین مسیر چند معیاره بر پایه سیستمهای اطلاعات مکانی
Multi-criteria shortest path problems (MSPP) are called as NP-Hard. For MSPPs, a unique solution for optimizing all the criteria simultaneously will rarely exist in reality. Algorithmic and approximation schemes are available to solve these problems; however, the complexity of these approaches often prohibits their implementation on real-world applications. This paper describes the development ...
متن کاملSolving Multi-objective Optimal Control Problems of chemical processes using Hybrid Evolutionary Algorithm
Evolutionary algorithms have been recognized to be suitable for extracting approximate solutions of multi-objective problems because of their capability to evolve a set of non-dominated solutions distributed along the Pareto frontier. This paper applies an evolutionary optimization scheme, inspired by Multi-objective Invasive Weed Optimization (MOIWO) and Non-dominated Sorting (NS) strategi...
متن کاملSolving random inverse heat conduction problems using PSO and genetic algorithms
The main purpose of this paper is to solve an inverse random differential equation problem using evolutionary algorithms. Particle Swarm Algorithm and Genetic Algorithm are two algorithms that are used in this paper. In this paper, we solve the inverse problem by solving the inverse random differential equation using Crank-Nicholson's method. Then, using the particle swarm optimization algorith...
متن کامل